Supercongruences concerning truncated hypergeometric series

نویسندگان

چکیده

Let $$n\ge 3$$ be an integer and p a prime with $$p\equiv 1\pmod {n}$$ . In this paper, we show that $$\begin{aligned} {}_nF_{n-1}\bigg [\begin{array}{llll} \frac{n-1}{n}&{}\frac{n-1}{n}&{}\ldots &{}\frac{n-1}{n}\\ &{}1&{}\ldots &{}1\end{array}\bigg | \, 1\bigg ]_{p-1}\equiv -\Gamma _p\bigg (\frac{1}{n}\bigg )^n\pmod {p^3}, \end{aligned}$$ where the truncated hypergeometric series x_1&{}x_2&{}\ldots &{}x_n\\ &{}y_1&{}\cdots &{}y_{n-1}\end{array}\bigg z\bigg ]_m=\sum _{k=0}^{m}\frac{z^k}{k!}\prod _{j=0}^{k-1}\frac{(x_1+j)\cdots (x_{n}+j)}{(y_1+j)\cdots (y_{n-1}+j)} $$\Gamma _p$$ denotes p-adic Gamma function. This confirms conjecture of Deines et al. (Hypergeometric Series, Truncated Hypergeometric Gaussian Functions, Directions in Number Theory, vol. 3, pp. 125–159. Assoc.WomenMath. Ser., Springer, New York, 2016). Furthermore, under same assumptions, also prove p^n\cdot {}_{n+1}F_{n}\bigg [\begin{matrix} 1&{}1&{}\ldots &{}1\\ &{}\frac{n+1}{n}&{}\ldots &{}\frac{n+1}{n}\end{matrix}\bigg ]_{p-1} \equiv _p\left( \frac{1}{n}\right) ^n\pmod which solves another [5].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Hypergeometric series and supercongruences

Let p be an odd prime. In 1984, Greene introduced the notion of hypergeometric functions over finite fields. Special values of these functions have been of interest as they are related to the number of Fp points on algebraic varieties and to Fourier coefficients of modular forms. In this paper, we explicitly determine these functions modulo higher powers of p and discuss an application to super...

متن کامل

Gaussian Hypergeometric Series and Extensions of Supercongruences

Let p be an odd prime. The purpose of this paper is to refine methods of Ahlgren and Ono [2] and Kilbourn [13] in order to prove a general mod p congruence for the Gaussian hypergeometric series n+1Fn(λ) where n is an odd positive integer. As a result, we extend three recent supercongruences. The first is a result of Ono and Ahlgren [2] on a supercongruence for Apéry numbers which was conjectur...

متن کامل

A 45 Integers 12 ( 2012 ) Supercongruences for a Truncated Hypergeometric Series

The purpose of this note is to obtain some congruences modulo a power of a prime p involving the truncated hypergeometric series p−1 � k=1 (x)k(1− x)k (1)k · 1 ka for a = 1 and a = 2. In the last section, the special case x = 1/2 is considered.

متن کامل

Truncated Hypergeometric Series Motivated by the Works of Slater and Verma

Motivated by the works of L.J. Slater and A. Verma, we have derived some results on truncated unilateral generalized hypergeometric series of positive unit argument subject to certain conditions in numerator and denominator parameters. The results presented here are presumably new.

متن کامل

Theta hypergeometric series

We formulate general principles of building hypergeometric type series from the Jacobi theta functions that generalize the plain and basic hy-pergeometric series. Single and multivariable elliptic hypergeometric series are considered in detail. A characterization theorem for a single variable totally elliptic hypergeometric series is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02772-0